
MAXIMIZE APP
PERFORMANCE
BY OPTIMIZING
WEB FONTS

Toronto.js, 27 July 2023

Lazar Nikolov

● DevRel at Sentry.io
● Full stack engineer
● Knack for Frontend and UI

1 CLS and how fonts cause it

2
CLS minimization strategies

Agenda

CLS and how fonts cause it

Layout shifts are bad!

How is CLS calculated?

It’s the product of the impact fraction and the viewport distance fraction:

CLS = impact fraction * viewport distance fraction

The values are obtained by measuring how the “unstable” elements move
between two animation frames. They’re decimal points between 0 and 1,
which represent % of changes in the viewport (impact fraction) and how far
the element moved relative to the viewport (viewport distance fraction).

What’s a good CLS score?

Less is always better, but your goal should be to stay within the 0-0.1 range.

What’s a good CLS score?

Not every device will give you the same CLS score.

Outside factors like device performance and internet speed affect the CLS
score, so the one you see in your dev tools in Chrome won’t necessarily be the
one your users will experience.

To keep an eye on what the actual CLS score is, you need to implement tools
like Sentry in your app. Side benefits: other performance metrics and web
vitals, and also crash reporting!

How fonts cause CLS?

● FOIT, or Flash of Invisible
Text, is when the browser
loads the page without
the text while the font is
being downloaded.

● FOUT, or Flash of
Unstyled Text, is when
the browser uses a
system font while the
font is being downloaded.

CLS minimization strategies

Don’t use a web font

● It’s not really a tip, but I had to mention it.

● If you it’s not necessary, don’t opt-in to use a web font.

● Do yourself a favor and avoid all the upcoming tips.

● ModernFontStacks.com

Host your own fonts

● It might be easier importing a Google Font, but hosting
your own fonts has a lot of benefits.

● Also, not as complex as it might seem.

● Avoid another HTTP round trip, because the browser
already have a connection to your server.

● Don’t depend on the availability of the third-party
service.

Use less font files

● Pay attention to the font weights and styles you’re
importing. Do you need all of them?

● The browser is capable of mimicking the weight and
style of the font, but it varies from font to font.

● Make sure to check if the faux-bold and faux-italic look
“good enough” before importing the actual font files.

Use a woff2 font format

● Woff2 supports subsetting (removing unused glyphs to
reduce file size)

● It also uses brotli compression, which produces the
smallest file size and it’s supported by all modern
browsers

Use the font-display property

● auto: the font display strategy is up to the browser

● block: short block and infinite swap

● swap: no block and infinite swap

● fallback: extremely small block and short swap

● optional: extremely small block and no swap

Define a fallback font with descriptors

● If you decided to go with the swap strategy, you should
spend some time fine tuning the fallback font.

● Use size-adjust, ascent-override,
descent-override, line-gap-override to minimize
the difference between the fallback font and the OG
one.

● Check out this codepen, and Malte Ubl’s tool if you need
help with the fine tuning.

https://codepen.io/simonjhearne/pen/rNMGJyr
https://www.industrialempathy.com/perfect-ish-font-fallback/?font=Montserrat

Thank you 💖
Demo project (GitHub):

nikolovlazar/webfonts-cls-workshop

API Performance Meetup:

2 August, 129 Spadina Ave 7 floor, 5:30pm

bit.ly/3DAnDsh

Check out our Sandbox:

sentry.io/demo/sandbox

Sign up for a Sentry account:

sentry.io/signup

